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a b s t r a c t

Identification and discrimination of bacterial strains of same species exhibiting resistance to antibiotics
using laser induced breakdown spectroscopy (LIBS) and neural networks (NN) algorithm is reported.
The method has been applied to identify 40 bacterial strains causing hospital acquired infections (HAI),
i.e. Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Salmonella
pullurum and Salmonella salamae. The strains analyzed included both isolated from clinical samples and
constructed in laboratory that differ in mutations as a result of their resistance to one or more antibiotics.
Small changes in the atomic composition of the bacterial strains, as a result of their mutations and
genetic variations, were detected by the LIBS–NN methodology and led to their identification and
classification. This is of utmost importance because solely identification of bacterial species is not
sufficient for disease diagnosis and identification of the actual strain is also required. The proposed
method was successfully able to discriminate strains of the same bacterial species. The optimized NN
models provided reliable bacterial strain identification with an index of spectral correlation higher than
95% for the samples analyzed, showing the potential and effectiveness of the method to address the
safety and social-cost HAI-related issue.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hospital acquired infections (HAI) have been widely studied
in the past 30 years and have been raised to top-priority issue
due to the associated economic and social costs [1]. Therefore,
many preventive campaigns as well as new protocols have been
implemented [2,3]. On average 5–7% of hospitalized patients
are affected by HAI, and 1% of such unwanted events result in
the patient0s death [4]. Bacteria are responsible for 95% of HAI,
Escherichia coli (18.2%), Staphylococcus (18.1%), Pseudomonas (6.0%),
Enterococcus (15.4%), Klebsiella (3.7%), Acinetobacter (0.8%), and
Salmonella (2.8%) being the most relevant ones.

An important issue highlighted in recent years has been the
increasing emergence of bacteria that are resistant to many anti-
microbial therapies, sometimes resulting in multidrug-resistant
strains or “super bugs.” One of the overriding reasons for this is
the widespread indiscriminate use of antibiotics to treat infections
[5]. This antibiotic resistance is evolved under the treatment
regimens of single or multidrug combinations as a result of the
mutations [6].

During the past decades several methods have been proposed to
optimize the identification of bacterial strain, which are based on
molecular techniques such as fluorescent probes [7], microarray
assemblies [8,9] and polymerase chain reaction [10,11]. However,
these methodologies present some difficulties and drawbacks such
as use of consumables, primer, probes or fluorescently labeled RNA
antibodies [12]. Moreover, sometimes the sequences in the database
are not accurate or up-to-date and micro-heterogeneity is also found
common in 16S rRNA gene sequence within a species [13,14]. The
phenotypic similarities between the strains of the same bacterial
species restrict their identification using routine diagnostic methods
[15]. Although these methods provide a reliable and accurate bacterial
identification, special sample treatment methods, the high costs and
low speed to perform such analysis limit their use as rapid diagnostic
methods in common laboratories in order to provide quick results
which leads to an increase in the rates of infectious diseases in clinical
settings. Further the direct handling of these potentially pathogenic
bacterial samples poses health-associated security risks. At present,
clinical safety procedures and cost-related considerations do not allow
an easy routine analysis of highly dangerous pathogenic bacterial
specimens causing hospital acquired infections. Nevertheless, bacterial
identificationwithin the first 24 h of infection allows the use of a more
effective and less risky targeted-therapy decreasing unnecessary
hospitalization days and costs.
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It is also necessary to point out the importance of sample
preparation, which is an important step to achieve a significant
result within a reasonable amount of time, thereby, avoiding or
reducing the need for time-consuming culture enrichment steps.
Thus, the increasing need for high speed and precision illustrates
the importance of sophisticated methods for sampling and sample
preparation within the overall process. The proper development
and adaptation of sample preparation towards the detection
method, is essential for exploiting the whole potential of the
complete workflow of any diagnostic method.

Detection and identification of biological samples and, in particular
bacteria, using laser induced breakdown spectroscopy (LIBS) analysis
has been studied by several research groups [12,16–22]. The motiva-
tion of these studies was to evaluate the ability of LIBS to provide fast
identification compared to traditional bioanalytical methods, benefit-
ting from the possibility to combine it with chemometric methods in
order to increase the performance of the technique. Morel et al. [18]
investigated the detection of six bacteria by time resolved LIBS. They
placed particular emphasis on Bacillus globigii, which acts as a non-
pathogenic surrogate for Bacillus anthracis (anthrax), demonstrating
the ability of LIBS to detect bacteria. Baudelet et al. [20] showed an
unambiguous discrimination of different bacteria based on the con-
centration profile of trace elements. Recently, Rehse et al. [12,17]
studied the effect of different experimental conditions (e.g. bacteria
dilution and nutrient deprivation) on bacteria identification by dis-
criminant functional analysis showing successful bacterial classifica-
tion. Multari et al. [19] applied partial least squares regression analysis
to differentiate E. coli from Staphylococcus aureus strains. Although
these studies present good results, in some cases correct identification
rate of bacterial strains or correlation falls below 85%. Thus, there is a
clear need for more thorough and systematic studies that include new
approaches making it possible to take this methodology in clinical
setting for diagnosis of diseases and public health. Therefore, the
motivation behind this study is to use a classification model for
bacterial identification using artificial intelligence algorithms like
neural networks (NN) to improve the accuracy and precision of the
classification process. In a previous study by our group [23] artificial
intelligence algorithms like neural networks (NN) have been used that
have shown to be a promising chemometric methodology to classify
and predict bacterial samples at genus level with a high degree of
precision and accuracy. The full sets of variables (intensities at each
wavelength) that constitute the sample spectrum are important in the
process of comparison performed by the NN, which constitutes the
basis of their ability to carry out discrimination. The NN is able to
compute internal parameters (weights and bias) in the learning
process for classifying a given set of input variables as belonging to
particular sample with a high tolerance for noise and the presence of
outliers [24].

In this paper we have intended to extend the previous study to
investigate the application of LIBS–NN to discriminate different
antibiotic resistant strains of same bacterial species and address its
use as a rapid potential diagnostic methodology. The aim is to
determine if genetic variations between bacterial strains of the
same bacterial species, even when there is a difference in only one
gene, generate sufficient or significant changes in their atomic
composition which can be detected by LIBS–NN method in order
to achieve their discrimination and identification.

2. Material and methods

2.1. LIBS set-up

The LIBS technique and the methodology used in the present
work together with the most significant experimental conditions
have been previously described [23]. Briefly, LIBS measurements

were obtained using a Q-switched Nd:YAG laser (Quantel, Brio
model) operating at 1064 nm, with a pulse duration of 4 ns full
width at half maximum (FWHM), 4 mm beam diameter and
0.6 mrad divergence. Samples were placed over an X–Y–Z manual
micro-metric positionator with a 0.5 μm stage of travel at every
coordinate to ensure that each laser pulse impinged on a fresh
sample. The laser beam was focused onto the sample surface with
a 100 mm focal-distance lens, producing a spot of 100 μm in
diameter. The laser fluence was fixed to 20 J/cm2 and the repeti-
tion rate was 1 Hz. Emission from the plasma was collected with a
4 mm aperture, and 7 mm focus fused silica collimator placed at
3 cm from the sample, and then focused into an optical fiber
(1000 μm core diameter, 0.22 numerical aperture), coupled to a
spectrometer. The spectrometer system was a user-configured
miniature single-fiber system EPP2000, StellarNet (Tampa, FL,
U.S.A.) with a CCD detector. A grating of 300 l/mm was selected;
a spectral resolution of 0.5 nm was achieved with a 7 μm entrance
slit. The wavelength range used was from 200 to 1000 nm.
Therefore, 2048 data points were recorded for each sample. The
detector integration time was set to 1 ms. In order to prevent the
detection of bremsstrahlung, the detector was triggered with a
5 μs delay time between the laser pulse and the acquired plasma
radiation using a digital delay generator (Stanford model DG535).
The spectrometer was computer-controlled using an interface
developed with Matlab, which allowed for data processing and
real-time analysis.

2.2. Bacterial samples

A total of 40 strains of different bacterial species i.e. E. coli (Ec)
[25], Pseudomonas aeruginosa (Pa) [26], Klebsiella pneumoniae (Kp)
[27], Salmonella typhimurium (St) [28], Salmonella pullorum (Sp)
[28] and Salmonella salamae (Ss) [28] were included in the study.
Kp, Ec and Pa strains showed multidrug antibiotic resistance and
multiple genes mutations (Table 1), whereas St, Sp and Ss were
resistant to kanamycin and differed in only one gene (Table 2).
Two bacterial strains of the Salmonella species (strains 2 and 3 of
Table 2) were constructed by inactivation by directed mutagenesis
of specific gene in the wild type background (strains 1 of Table 2).
All the bacterial strains were cultivated in LB agar (Difco Micro-
biology, Lawrence, KS, U.S.A) at 37 1C for 12 h in three Petri dishes
(8.9 cm in diameter).

Sample ID has been represented in XYZ format, where X is the
genus, Y the bacterial species and Z the type of strain. Thus, for
example, Kp1 refers to the first strain of K. pneumoniae (K21P).

2.3. LIBS measurements and spectral libraries

Bacterial samples were measured directly in the Petri dish at
room experimental conditions. The water content of the bacterial
samples was reduced by flowing air before LIBS spectra acquisi-
tion. For each bacterial strain four replicate Petri dishes were
measured. Eighty single-laser-shot spectra from one Petri dish and
twenty single-laser-shot spectra each from the remaining three
Petri dishes were acquired. The acquisition time of these 140
spectra was approximately 2 min. Because the emission intensity
signal may vary with laser pulse, spectra were normalized by the
most intense emission line, i.e. Na(I), to avoid instrumental
variations (Fig. 1). The 80 spectra from the first Petri dish were
used to train the NN model for each bacterial strain (spectral
training library), whereas the 20 spectra from the remaining three
Petri dishes each were used to test the model (spectral test
library). Although the matrix dataset was considerably large, the
computation time for training each NN model was below 10 s.
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2.4. Neural network model

Home-made neural network software specifically designed to deal
with the problem of bacterial classification was developed. The NN
models were based on a multilayer perceptron, feedforward, super-
vised network that consisted of several neurons (information proces-
sing units) arranged in two or more layers receiving information from
all of the neurons of the previous layer. The connections are controlled
by a weight that modulates the output from the neuron before
inputting its numerical content into a neuron in the next layer.

The NN topology consists of three layers (input, hidden and
output), which is widely used to model systems with a similar level
of complexity [29]. In particular, the input layer consisted of 2048
nodes (spectral response in the 200–1000 nmwavelength range). The
number of neurons in the hidden layer was 10. The output layer
(classification result) was comprised of J neurons (where J¼number of
reference samples used) for estimating the similarity between the
reference sample spectra and the testing sample spectrum.

The process that optimizes the weights, i.e. the learning or training
process was based on a back-propagation (BP) algorithm [30,31]. The
inputs from each neuron are added by an activation function, and the
result is transformed by a transfer function that limits the amplitude of
the neuron output. In this work, the hyperbolic tangent sigmoid
function was used as the NN transfer function. Every NN model was
estimated using Matlab software (Mathworks, 2010a).

2.4.1. Neural network model training
Because the NN is a supervised method, in order to optimize

the weight matrix it is necessary to use input and output data that

Table 1
Description of bacterial strains with multidrug antibiotic resistance.

Bacterial species Strain Antibiotic resistance phenotypes diffusion diskab Sample ID

Klebsiella pneumoniae K21Pc Amp, Amo, Amc, Tet, Nal, Fox, Cip, Tsu, Ctx, Caz, Azt Kp1
K18Pc Amp, Amo, Amc, Clo, Tet, Nal, Cip, Stm, Tsu, Caz, Azt Kp2
K17Pc Amp, Amo, Amc, Tet, Nal, Cip, Tsu, Ctx, Caz, Azt Kp3
K16Rc Amp, Amo, Amc, Clo, Stm, Tsu, Ctx, Caz Kp4
K11CMc Amp, Amo, Amc, Clo, Tet, Nal, Fox, Cip, Tsu, Ctx, Caz, Azt Kp5
K11Pc Amp, Amo, Amc, Clo, Tet, Nal, Cip, Stm, Tsu, Ctx, Caz, Azt Kp6
K7Pc Amp, Amo, Amc, Clo, Tet, Nal, Fox, Cip, Tsu, Ctx, Caz, Azt Kp7
K6Pc Amp, Amo, Amc, Clo, Tsu, Ctx, Caz, Azt Kp8
K3Cc Amp, Amo, Tet, Ctx (Int.) Kp9
K2Pc Amp, Amo, Tet, Nal, Tsu, Caz, Azt Kp10

Escherichia coli MC6-RP11 MC6RP1 leuþ ftsA3(Ts) Ec1
QCB1 MC6RP1 ponB::Spcr Ec2

Pseudomonas aeruginosa PA1 Serotype 010 Pa1
PA2 Serotype 014, Gen, Amk, Tob, Azt, Tic, Pip, Clo, Car, Eri Pa2
PA3 Serotype 011 Pa3
PA4 Serotype N/A Pa4
PA5 Serotype 04, Azt, Tic, Pip, Cip, Clo, Car, Eri Pa5
PA6 Serotype 011 Pa6
PA7 Serotype 014 Pa7
PA8 Serotype 01, Azt, Tic, Pip, Cip, Clo, Car, Eri Pa8
PA9 Serotype 09 Pa9
PA10 Serotype 06, Azt, Tic, Pip, Cip, Clo, Car, Eri Pa10
PA11 Serotype 010 Pa11
PA12 Serotype 015 Pa12
PA13 Serotype 09 Pa13
PA14 Serotype 011 Pa14
PA15 Serotype 011 Pa15
PA16 Serotype 011, Gen, Amk, Tob, Azt, Tic, Pip, Imp, Cip Pa16
PA17 Serotype 010, Gen, Amk, Tob, Azt, Tic, Pip, Cip, Imp, Clo, Car, Eri Pa17
PA18 Serotype 015 Pa18
PA19 Serotype 011 Pa19

a Amp, ampicillin; Amo, amoxicillin; Amc, amoxicillin-clavulanate; Clo, chloramphenicol; Tet, tetracycline; Nal, nalidixic acid; Fox, cefoxitin; Cip, ciplofloxacin; Stm,
streptomycin; Tsu, trimethoprim/sulfamethoxazole; Ctx, cefotaxime; Caz, ceftazimide; Azt, aztreonam; (Int.), Intermediate.

b Gen, gentamicin; Amk, amikacin; Tob, tobramicin; Azt, aztreonam; Tic, ticarcilin; Pip, piperacillin; Cip, ciplofloxacin; Imp, imipenem; Clo, chloramphenicol; Car,
carbenicillin; Caz, ceftazimide; Eri, erithromicin.

c K. pneumoniae isolates resistant or intermediate to cephalosporin by the disk diffusion method.

Table 2
Salmonella strains that differ in a single gene.

Bacterial species Strain Sample ID

1 2 3

Salmonella pollorum 1JVC 1/1Km 2/1Km Sp
Salmonella salamae 2JVC 1/2Km 2/2Km Ss
Salmonella typhimurium SL-1344 1/22Km 2/22Km St

JVC: Wild type codification.
Km: Mutant in a geneby insertion of a Kanamycin resistance casette.

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Ca II

Hα

N I

N I

O I

O I

K INa II

Ca I

Na I

Ca II

Mg II
C I

N
or

m
al

iz
ed

 In
te

ns
ity

 (a
.u

.)

Wavelength (nm)

Fig. 1. Normalized LIBS spectrum of Escherichia coli.
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adequately characterized the system to be modeled. The spectral
data of the training library was randomly divided as a part of the
training process into two subsets: 80% (64 spectra) for training and
20% (16 spectra) for self-validation of the model. Once the training
and self-validation process was carried out, the models were
validated by testing the 60 spectra from the remaining three
replicas of the bacterial strains.

The identification process was based on the ability of the NN to
detect the degree of similarity between the new spectrum and
each of the reference spectra used in the training process. During
the training process, each bacterial strain was associated with an
identification number in the output layer. Thus, a perfect identi-
fication is obtained if the output from the NN model for the test
samples of the same bacterial strain matched the identification
number assigned to the bacterial strain used to train the model.
Nevertheless, it is possible to use more than two bacterial strains
simultaneously to train the NN to speed up the sample analysis but
an increase in data manipulation occurs. Zero identification
number was always used to indicate no match at all.

NN training was achieved by applying the BP algorithm based on
the conjugate gradient method [32], one of the general-purpose
second-order techniques that helps minimize the goal functions of
several variables. Second order indicates that such methods use the
second derivatives of the error function, whereas a first-order techni-
que, such as standard back-propagation, uses only the first derivatives.
To determine when the training should be stopped, an early stopping
criteria based on performance improving (error rate) of the validation
set [33]. The number of epochs was not relevant in this case. To avoid
an overfitting of the NN model, the learning process was repeated
until a minimum of the mean square error (MSE) of the verification
data, defined in Eq. (1), was reached:

MSE¼ 1
N
∑
N

k
ðrk�ykÞ2 ð1Þ

where N, yk, and rk are the number of input data, the response from
each output neuron, and the observed output response, respectively.
A detailed description of the calculation process is provided in the
literature [30,33].

2.4.2. Neural network model validation
Three validation tests were carried out for each NN model. The

first validation test performed was inter-bacterial species discri-
mination where the ability of NN models was evaluated to classify
the bacterial strains on the basis of their species. The second and
third validation tests were performed to evaluate the capacity of
the LIBS–NN methodology to discriminate between strains of the
same bacterial species with small changes in the atomic composi-
tion as a result of their resistance, mutations and genetic varia-
tions. The second validation test included strains which differed in
resistance to different antibiotics, whereas, the third validation
test included strains which differed in only one gene.

The model performance was evaluated by its accuracy, i.e.
the rate of correct bacterial classification or correlation within
the classified spectra. The model accuracy was estimated by the
parameter “spectral correlation”, which is expressed as the per-
centage of test-set spectra classified correctly. The higher the
index of spectral correlation of a test set, the better the capacity
of the NN model for discriminating a sample. A spectral correlation
value higher than 90% was considered as correct identification of
the sample.

3. Results and discussion

LIBS experiments were performed for some typical HAI-causing
bacteria and therefore important pathogens from medical point of

view. Fig. 1 shows a normalized LIBS spectrum of an Ec bacterial
sample, identifying the elements with the most intense
emission lines.

It has been shown that elements such as P, C, Mg, Ca and Na
provide sufficient information to achieve bacterial identification
[12,20,34]. However, due to the high similarity between the
spectra of the bacterial strain samples (especially in the case
of the differences is only in one gene), a broad spectral range
(200–1000 nm) was used in order to cover the greater number of
spectral characteristics and improve the performance of the NN
model. Several papers have shown [35] that reducing the number
of variables in the training of NN using spectral zones with few
peaks, selected by PCA, decreases the performance of the NN
model. Therefore, the selection of certain variables does not imply
that the other variables are redundant with respect to selected.
Thus, the larger the information (representative data) is used in
the training of the NN model, the better is the predictive capability
of the model. On the other hand, neural networks have a much
better noise performance.

Despite that there are not significant variations in the spectra
to easily discriminate the bacterial strains, from the mathematical
point of view each bacterial strain can be discriminated based on
its complete spectral fingerprint [24]. Therefore, the whole set of
variables that constitute the sample spectrum is important in the
classification process performed by the NN model by computing
internal parameters (weights and bias) in the training step. This
fact constitutes the basis of their ability to carry out the discrimi-
nation between the bacterial strains with high tolerance for noise
and the presence of outliers.

Because samples were measured at room conditions, emission
signals from air were also observed in the LIBS spectra. However, as it
has been demonstrated, these signals do not significantly interfere the
relative spectral contribution of the trace elements of the samples [36].
In order to improve the signal to noise ratio of the emission lines, the
water content of the samples was reduced by flowing air before LIBS
spectra acquisition. On the other hand, a continuum background
emission was also observed as a typical component of LIBS spectra.

3.1. Inter-bacterial species discrimination

Inter-bacterial species discrimination test involved the classifi-
cation of bacterial strains based on their species. The capacity of
LIBS–NN method to discriminate bacterial species, independent of
the strain of the bacterial species used to train the NN model, was
evaluated. For carrying out this validation test, the NN was trained
with two libraries of different bacterial species, and tested with
the libraries of the bacterial strains of all species. Even though
it is possible to include the spectral datasets of all the bacterial
strains in the training phase of the neural network, we have used
only two bacterial libraries to train the neural network as a
first approach to test whether there are sufficient significant
spectral differences between different bacterial strains that allow
for discrimination. Fig. 2 shows that the LIBS–NN methodology
developed was able to correctly classify all the bacterial strains to
their corresponding bacterial species, achieving accurate and
reliable results. All bacterial strains were assigned to their species
(95% spectral correlation) independent of the bacterial strains used
to train the NN model, demonstrating the robustness of the
methodology. Hence, classification is based on the major differ-
ences in the spectral fingerprints of the bacteria at species level.

3.2. Intra-bacterial strain discrimination of multidrug resistant
bacteria

Strains of Kp, Ec and Pa which acquired resistance to multiple
antibiotics were selected for LIBS analysis. These strains exhibited

S. Manzoor et al. / Talanta 121 (2014) 65–7068



different antibiotic resistance patterns and, hence, different muta-
tions. In this validation, NN models were estimated training the
NN with two libraries of different strains of the same bacterial
species and validated with all the test libraries of the strains of
that species. An average spectral correlation for each bacterial
strain and estimated model was calculated. Fig. 3 shows the
classification results (spectral correlation) obtained for all the
models and bacterial species. A spectral correlation higher than

92%, 98.3% and 95% for K. pneumoniae, E. Coli and P. aeruginosa was
achieved, respectively, demonstrating the good performance of the
LIBS–NN methodology to classify the strain samples for each of the
bacterial species.

The fact that 100% spectral correlation was not achieved could be
attributed to that each spectrum was recorded with a single laser
shot. Nevertheless, this lack of complete accuracy was considered
no significant in the overall performance of the LIBS–NN method

Fig. 2. Inter-bacterial species classification.

Kp1 Kp2 Kp3 Kp4 Kp5 Kp6 Kp7 Kp8 Kp9 Kp10
0

10

20

30

40

50

60

70

80

90

100

Ec1 Ec2
0

10

20

30

40

50

60

70

80

90

100

Pa1 Pa2 Pa3 Pa4 Pa5 Pa6 Pa7 Pa8 Pa9 Pa10 Pa11 Pa12 Pa13 Pa14 Pa15 Pa16 Pa17 Pa18 Pa19
0

10

20

30

40

50

60

70

80

90

100

Sp
ec

tr
al

 C
or

re
la

tio
n 

(%
)

Bacterial Strain Bacterial Strain

Sp
ec

tr
al

 C
or

re
la

tio
n 

(%
)

Sp
ec

tr
al

 C
or

re
la

tio
n 

(%
)

Bacterial Strain

Fig. 3. Intra-bacterial strain classification of multidrug resistant strains of (a) K. pneumoniae (b) E. coli (c) P. aeruginosa.
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developed to discriminate strains of different bacterial species.
Therefore, these results showed that NN trained with datasets of
different bacterial strains allowed to discriminate strains of the same
bacterial species with multidrug resistance and genetic variations
that imparted changes in their elemental composition providing a
characteristic fingerprint and hence, enabling LIBS-based bacterial
identification.

3.3. Single-gene intra-bacterial strain discrimination

A single-gene intra-bacterial strain discrimination of Salmonella
species was carried out. Three different strains for each species
with genetic variation of only one gene were selected. This minor
variation in the genetic code of the bacterial strains made the
training of the NN to take more time (ca. 3 s) in order to reach the
minimum MSE. In this validation, NN models were estimated
training the NN with two libraries of different strains of the
same bacterial species and validated with all the strains’ libraries
of the same species. An average spectral correlation for the three
estimated models for each bacterial strain and bacterial species
was calculated. Table 3 shows that a spectral correlation higher
than 95%, 95% and 96.6% for S. pollorum, S. salamae and
S. typhimurium was achieved, respectively, demonstrating the
capacity of the LIBS–NN methodology to classify bacterial strain
samples that differed in a single gene.

These results demonstrate that when the NN models were
trained with libraries of different species, they were able to
correctly identify strains on the basis of their species. Moreover,
the discrimination capability of the NN models is not only based
on their ability to find similarities between spectra but also due to
their capacity to tolerate small spectral variations among them.
This feature led to classify the strains to their corresponding
species and also the intra-bacterial strain discrimination.

4. Conclusions

A method based on laser induced breakdown spectroscopy
(LIBS) and neural networks (NN) algorithms was developed and
applied to achieve rapid identification and discrimination of
different bacterial species and strains causing hospital acquired
infections, including multidrug resistance and single gene varia-
tion bacterial strains based on their characteristic spectral finger-
print. Single shot LIBS measurements combined with a supervised
neural network method were sufficient for a clear identification
and classification of bacterial strains of different species due to the
reliability and robustness of the estimated non-linear classification
models.

The results show that the LIBS–NN methodology proposed is
able to discriminate bacterial species and strains with high
accuracy. Therefore, it may be considered a quick, simple and
cost-effective alternative for the slower and more expensive
biological methods to discriminate strains of the same bacterial

species. The three validation tests carried out show the ability of
the NN models for rapid identification of bacterial samples from
species to strain level with minor genetic variations. Moreover,
single gene variations are enough to discriminate strain of the
same bacterial specie. From the medical point of view, these
capabilities would allow an early diagnosis of the bacterial infec-
tions and their treatment which may reduce the recurrence of HAI.
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Single-gene intra-bacterial strain classification results.
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